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1. Introduction. Our purpose herein is to introduce a model for quality

control, and to characterize a policy which maximizes the given payoff

function. Envisage a machine with two internal states, 0 and 1. Starting

at state 0 at time zero, it manufactures an item which is either defective

or non-defective and then in unit time, either remains in state 0 or goes

to state 1 according to the scheme.

0 a 0

1 Cl

Note that 1 is an absorbing state. After every transition the machine

manufactures another item. There are different probabilities of the item

being defective or non-defective according as the state of the machine,

and given by:

P non-defective pI non-defective

0 1

q defective q, defective

where p > p1 t a< 1.

After any number of itemshave been turned out, the machine

may be stopped for an integer time T, and when this repair period T

is over it is in state 0 and the manufacturing process begins again.

If there is profit C for every non-defective item, cost D for

every defective item and a charge G for every time unit that the machine is

in repair, then roughly, we wish to maximize the long run profit per unit

time.
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By a policy is meant some method of deciding when to stop the

machine and repair it. The difficulty, of course, is that we cannot

directly observe the state of the machine, but only the condition of

the manufactured items. If our stop and repair policy is too erratic, it

may be that the limiting cost per anit time does not exist. We extricate

ourselves from this difficulty by considering only "sensible" polities

Our main result is, that among these latter, the optimum is of the

form: there is a number X such thatwhenthe conditional probability

that the machine is currently in state 1, given all the observed items

up to the present, exceeds X , stop and repair. This policy does not

seem to reduce to any of the standard quality control techniques.

This problem is similar to those treated by Howard [1] , except

that the pertinent Markov chain has an infinite number of states. We were

led to it by our work on stopping rules, and the treatment is an interesting

example of some of the techniques mentioned in [2]. In the section to

follow we reduce the problem to a stopping rule problem. Following that proce-

dure we show that the stopping rule problem has solutions of the desired

form. This result is summarized in Theorem 2 of section 4.

2. Notations and Reduction of Problem. The class S of policies we will

work within are defined by: a policy is in S if

i) it leads to stop and repair infinitely often' with probability one.

ii) the dec'ision aA to whether to stop and repair is based only on

the sequence of items turned out since the end of the previous

repair period.

iii) if a sequence of items, following some repair period; leads to

a decision to stop and repair, then this same sequence following

any repair period leads to that decision.

(iv) the expected duration of running time between repair periods is

finite.
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There is possible here an alternative approach which starts from a

much larger class of policies and shows that for each policy in the

larger class there is a policy in S that is at least as good. See Blackwell

[3], for instance. But this would take us into theory far afield from the

present example.

Under a policy in S, define the first cycle of the machine to

be its history from time zero to the end of the first repair period,

but not including the first item manufactured after repair. The second

cycle begins with this latter item and extends similarly to the end

of the second repair period, and so on. Let Rk be the total profit during

the k th period, Nk the iength of the kth period. Then the profit per unit

time over the first n cycles is

RI+.•..+Rn
R1 nR

NI+.•..+Nn
1 +N

Under a policy in S, R 1 ,.. Rn are independent, identically distributed,

with E RI < co, and similarly for the N, ... ,N • The law of large number1 1' n

is thus in force so that with probability one

RI+..•.•+R ER1
li 1 n 1

NI+.. +N EN1
n 1 n1

This relationship reduces the problem to an analysis of only the

first cycle, i. e. , to find a policy which maximizes ER /EN . For the real

valued parameter P, define

ý(P) = sup(ER1 - PEN1 )

where the sup is over all policies in S. Note that 4(P) is decreasing

in P, since ER 1 -PEN1 is decreasing in P for every fixed policy. Also

O(P) > - o, all P, since ER 1 - PEN1 > -ao for the policy: stop and repair

after one item. Let Po = inf ;4(P) < ao}, then



Proposition 1: o < wo. There is a unique number > 0 such that

0(P ) = 0 and > C-(C+D)ql.

Proof: Suppose P > C, then the maximum amount we can make in any

period is C, but because we are being charged an amount P for every

period (because of the term -PEN1 ) it follows that c(P) < 0, P > C. For

each policy in S, ERI-PEN1 is linear in P, hence O(P) is concave on (pop 0o)

and thus continuous. Since 4(P 0) cc), for any given number M there is a

policy such that ER 1 -PoEN1 > 2M. By continuity, there is an e > 0 such

that ER -(Po +,)EN1 > M, so that 4(P + £) > 0. Since 4(P) is decreasing

and concave there must be a unique solution P of 0(P) = 0.

Now assume that P < C-(C+D)q1 and considerapolicythat continues for

n items, n large, and then stops and repairs. Since the machine is in state

1 with probability tending to unity as more and more transitions go by, ER1

is equal to (CpI-Dq1 )n plus terms of lower order in n. But CpI-DqI=C-(C+D)q1

so that ERI- ENJ is equal to [C-(C+D)q-P ]n plus terms of lower order,

contradicting •l( )0.

For this number P , we have sup(ER 1 -P EN 1 )=0, so that

ER 1 -P EN1 < 0 for all policies in S. Hence

ER ,
sup EN =E

Further, if there is a policy which achieves the optimization of ER1 -P EN 1,

then this same policy optimizes ER IENIV
ALet R be the profit from the items manufactured under a given

policy and N the number of items manufactured.
A

R =R - GT

A
N = N + (T -1)

A XA ,
and ERI-p EN 1 = EIR - P EN. [GT + P (T-l)]. Define random variables Xk by
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0 C if kth item is non-defective

Xk = -D if kth item is defective

and using J to denote R-PV, we write

N
EJ = E (Xk-•

k-i
A

By an interchange of summation and integration, valid since EN < co

(see Doob [5]) for instance), this becomes

0o

EJ= (Xk- )dP

k=l > k)

Define Uk E(Xk :IXk ")** Xl), then since the sets rN> 4 depend only on

Xkl,..., X. We rewrite again

EJ1 = 1 J u { 1 P}I dP

k=l { > k}

if we put Vk P(xk=-DIxk_.. then

Uk = C(l-Vk) -DVk9

so N

EJ = E (-(C+D)Vk+C-•)

k=l

The situation of maximizing EJ may be described as follows: for the kth

item we receive a fee

f(Vk) = -(C+D)Vk + C-P

and are free to stop at this point or to go one more item.
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Parts of the above reduction, using cycles, to a stopping rule

problem have been used before in other contexts, and the appropriate

references are in [2].

3. Reduction to a Functional Equation

The next pertinent fact is-
Proposition 3: The Vk form a stationary Markov chain on [qo, qJ such

that if

v(q + aqo)-aql q

Fl1(v) lv

v( apo-qI)+q1 (1- aPo)

F z(v) = l-v

then if Vk =v, Vk+l is either FI(v) or F (v) with probabilities v, 1-v.

Proof: We have that

Vk+l = P(Xk+1 = -DIXk,... ,X)

= P(Xk+l = -DI xk = -D, Xk_ 1 ,.., , X1 ), probability Vk

P(Xk.+I = -DIXk C, Xkl... X 1 ), probability 1-Vk

We introduce variables Yk' Uk defined by: Yk is the state of the machine

just prior to the manufacture of the kth item, and Uk = P(YkI Xk_1 ..... Xl).

Denoting y 1 = P(Xk+l = -DIXk = X k_ -I ' Yz = P(Xk+l = -DlXk=C'

• .. , Xl), there follows

Y1 = P(Xk+l = -D, Xk = -DIXk_1'.. )/Vk

YZ = P(Xk+l = -D, Xk = CCIXkI .... )/l-Vk.

Thus,



YiVk = P(Xk+l =-D, Xk= -DIYk= 1)Uk+ P(Xk+l= -D, Xk = -DIYk = 0)(l-Uk)

2= ql1 U k+ qo0[ aqo0 + (1-a)q I ](1-Uk)

= (ql + aq )(ql-qo)U + aq + (1-a)qlq

y 2(1-Vk) = P(Xk+l= -D, X k= C IY k= 1) Utk+P(Xk+l =-D, Xk =CIYk =0)(l-Uk)

= Pl1q 1U k+ Po0 aqo0+(l -a)q I I(1-U k)

= (apo-q1)(qlqo0)Uk + ap0qo + (1-a)po q

We have, to boot, the relation

Vk = q0 (l Uk) + q1Uk$

and solving this for Uk and substituting above yields the given expression

for Fl, F 2 . For vE [qo' q ], consider the functional equation for H

(A) H(v) = max 0, E[H(V2 ) + f(V 2 ) lVI = v]}

where f(v) = -(C+D)v+ C .• This equation may be der'*ved in a fashion

similar to that used by Bellman in dynamic programming problems.

Heuristically, let H (v) be the maximum payoff starting from V1= v. We

have our choice of stopping and receiving zero or of making the transition

to V2 where we receive the amount f(V 2 ) plus our maximum expected payoff

starting from V 2 , this latter being H(V 2 ).

However, the above heuristic does not establish any optimality

properties, and while the connection between functional equations and

optimal policies has been investigated, (see [4], for example) none of

the results seem appropriate for the present problem. Therefore, we



must delve into the theory with the following theorem.

Theorem 1: If equation (A) has a bounded solution on [q ,q1 ], let a* denote
f * *

the policy: stop when VkC Ev;H(v) = 0) If s c S, then a is optimal in S

(where here S denotes all policies with finite expected stopping time).

Proof: Let s be any policy in S with stopping variable q such that

the set ~N~ depends only on the values of XV,... I Xk and EN < co.

For any 6 > 0, we may take n so large that

n

IEJ - Y f f k)f(V k)dP - ýAf )H(Vk )dPI <'
1 N> >n)

Thus,

0
n-l

EJ <~ + f- f (V kdP + f [H(V k)+f (V k )dP.

1 N~> k (N>n~

The set {N> n depends only on X, .... X n so we may replace the

last integrand above by E [H(Vn) + f(Vn )IV n1 ] and by (A) then

n-1

EJ <C + YZ f f (V k)dP + f H(Vn1 )dP

1 {I>k} N>n}

But {N> n)C N>n-l1 and H(v)> 0, so

n-1

EJ < f f (Vk)dP + f H(Vn-1)dP.

(AN>k} 1N~n-}

Continuing to proceed this way, and noting that V1 = qof we get

EJ < +H(qo)+f(qo)

On the other hand, let N be the stopping variable given by s , and J , the

payoff. Then,

08-



n-I
EJ > -E+ f f(Vk)dP + J E [HI(Vk) +f(Vn)IVn-l] dP

1 tN> kj IN ýnj

by (A), on IN* > n-l3 , the last integrand is equal to H(Vnl), yielding
n-i

EJ > -zj f f(V k)dP + f H(V nl)dP.

Furthermore, on the set IN* n-l1 , H(V O, giving

n-l

EJ > - + f(Vk)dP+ H(Vn1)dP.

1 N*_ tN*>n -
*

Continuing, we conclude EJ > -E+H(q )+f(q ), which proves the theorem.
0 0

4. Solution of the Function Equation

To investigate the solution of (A), we first prove:

Proposition 2: If e(v) is monotonic nonincreasing on qo1 ql, then so is

E~e(V2 ) V1 = v).

Proof: Let e (v) be defined as
0

V
1 qoV <Vov

eV (v) =
Vo 0 v <v<ql

Then,

Etov (Vr)IVfy =v):v (Ft(V))v+ 0v (Fz(v))(l-v).

It is easy to verify that Fl(v), F,(v) are monotonically increasing in v and that

on [qo# q1 ], FI(v) > F2 (v). Therefore,
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F1 (V) < v

E(e V(V)IV = v) FM > vo, F2 (v) <v

o0' Fz(V) > vo

and i.s decreasing. Since every nonincreasing function can be arbitrarily

closely approximated by finite sums with positive coefficients of functions

of the type v , the proposition follows.
0

To try and solve (A) we use an approximation procedure, defined

by

H(n+l)(v) = max 10, E[H(n)(V2 ) +f(V 2 ) I V ]1

with HM (v) =- 0.

Proposition 3. The H(n)(v) are a nondecreasing sequence of continuous

functions on [qo, ql]_. (n) H(n -)

Proof: Assume that H _(v) > Hn(v). Then,

H(n+l)(v) = maxl0, E[H(n)(VZ)+f(V )IV1 =v]l

> max 0, E[H(n-I)(Vz)+f(V2 )IV, =v]l

= H(n)(v)

And since H( )(v) > 0, we have always H (n+l) (v) > H (n)(v). Furthermore, if

H(n)(v) is continuous, then since E(8(V2 )=V1 =v) is continuous if 0 is continuous,

the proposition holds.

Proposition 4. H(v) = limr Hn (v) is a bounded solution of (A).
n

Proof: Consider the function av+b, where

a .. (C+D)1- a,

and b is taken so that av+b>0, all vE [qot ql]" By a quick computation

E(V 2 IV 1 =v) = av+(l-a)q1

so
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E[aV +b+f(V )1Vl=v] = (a-C-D)E(V IV zv)+b+C-P*

= (a-C-D)[av+(!.-a)ql] +b+C-P*

= av+b+C-(C+D)q1 P

< av+b

This last by Proposition 1. Therefore, if H(n)Iv) < av+b, then

"H(n+l)(V) = max ý0, E[H(n)(Vz) + f(Va)IVl =v]l

<maxý0, av+b = av+b.

This establishes that H(v) is bounded. That it is a solution is quite evident.

At this point, we have all the material necessary for our main result.

Theorem 2: Either the policy: never stop and repair, yields a larger ER /EN$1
then any policy in S, or there is a number X < 1 such that the policy: stop

and repair when

P(Yk:=I Xk"... ,Xl)> X

is in S and is optimal in S.

Proof: Let SnC [qo, q,] be defined by

Sn= v; H(n) (v)= 01

By Propositions 2 and 3, Sn is of the form [v , q ]i Vn < ql, or empty.

Since F 1 (ql) = F 2 (ql) ql, (A) gives H(ql) = max[0,FH(q)+ g(ql)] and since
g(q) = C-(C+D)q •. _< 0, S is non-empty unless poss'ibly= C--(C+D)q•

Leaving this latter case for the nonce, S H(v)=0'ý S is thus
IV J1 n

a set of the form [q, q).] By Theorem 1, if the policy: stop when VI [y, q

is in S, then it is optimum in S. Assume first that y < ql, and let N be the

stopping variable. Then

P(N >n)<P(VnI [y, ql]).

-11



To continue this inequality, we use:

EVn <qlP(VnE [y ql])+y P(Vn [q o )),

To getq-E
TogtP(VnC'[y ,ql]) <q1 En

By their definitions,

EV = qlP(Yn=l)+ qP(Yn=0)

and since P(Yn=) an, this gives

EVn = q I (q1 -qo)a n

Substituting,

* l qo n
P(N > n) < -q a

- ql-y

so EN < co. Now we show that if • > C-(C+D)q1 , then y < q1 " For taking,

limits in (A) as v goes up to q1 yields

H(q -)=max [ O,H(q¼-)+g(ql)]

and g(ql) < 0 implies H(ql-) = 0. Therefore, we can certainly find a neighbor-

hood of ql, say [q 1-E,ql], >0, onwhich

H(F 1 (v))v + H(FZ(v) )(l-v) + g(v) < 0,

and in this neighborhood, then, H(v) = 0.

Now for the case • C-(C+D)qI. In this case,

sup ER 1/EN1 = C-(C+D)q1.

But this is exactly the payoff from the policy that never stops.
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The theorem is stated in terms of the variables P(YklI k Xka....).

These are related to the Vk variables by

Vk+l = q1P(Yk=1 Xk,. .. ) + [ql(l-a)+qoa)][ l-P(Yk=lIXk,...

= a(q qo) P(Yk=l I Xk,... ) +q 1 (l- a) + q0a.

This transformation takes q into 1 and y <ql into some number X <1,

concluding the proof of the theorem.

5. The Character of the Optimal Polid"

We first give a more explicit form of the optimal policy by evaluating

P(Yk=I \Xk, Xk-I.... ). Note that

P(Yk# Yk-l' Yl, Xk'"."" XI) = P(Xk.... XI Yk' . 1 )P(Y ko P Y1 )

k

-7 P(XJ YJ)P(Yk P YI)"
j=l

Define Q. by3

Qj = P(Y k=1,.... Y j+, Yj=0,.... ,Y=O), j=l,. ... k
so (a)aj-1 j <k

j= { (
Q a kl I =k.

Then k-I k

P(Yk~l)Ck...Ix )=yP(XrIYr=O)ff[T X IY r~l)]

j=l r=l r=j+l

Let N. =no. of defectives in the first j trials, so
k+l N. j-N. N k-N k-j -j(Nk-N )

P(Y k=l'xk''" X I) = 7 qo0 PO q1 Pl Q j"

j=l

.'13.



Denoting z = qoP/poqI, W=poQ/p.
N k-I

P(ykl, Xk " X) k ql)N k 1- C N.k= k. 1 = zl Piw

j=l

Similarly

k qX1 N kI1 -a klqN Nk1lN k k]
P(Xk....X1)=pl(pl) a z w+ Nz w

The optimal policy becomes: stop when
k-i N N

z w _ > z kw

j=l
** */(-)(-*)

where X = k/(-a)(1-) Or, if J. is the no. of defectives in the last

j trials, stop when

k-i

j-=1

Or, if Io is the no. of non-defectives in the last j trials, stop when3

k-l q l I -kl(q.) 3 ()J **

q P --j=l

While this above expression may or may not be interesting, a more illuminating

form of the optimal policy was suggested by Roy Radner. This is: stop when

P(Yk=l I Xk ... 1X)

P(Yk= OIXk ..... X 1)

The expression on the left is a likelihood ratio, and the policy may be stated

as: at every step, test the hypothesis that the machine is in state one vs

state 0, given all the relevant information. When the hypothesis can be accepted

at a certain level, stop and repair.

-14-



The parameter X seems difficult to compute, although some

approximation methods are useful. As to the shortcomings of the model,

they are more or less apparent, and it is our hope that more realistic

models will follow.
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